INFORMATION TO USERS

This reproduction was made from a copy of a document sent to us for microfilming.
While the most advanced technology has been used to photograph and reproduce
this document, the quality of the reproduction is heavily dependent upon the
quality of the material submitted.

The following explanation of techniques is provided to help clarify markings or
notations which may appear on this reproduction.

1.

The sign or “‘target” for pages apparently lacking from the document
photographed is “Missing Page(s)”. If it was possible to obtain the missing
page(s) or section, they are spliced into the film along with adjacent pages. This
may have necessitated cutting through an image and duplicating adjacent pages
to assure complete continuity.

. When an image on the film is obliterated with a round black mark, it is an

indication of either blurred copy because of movement during exposure,
duplicate copy, or copyrighted materials that should not have been filmed. For
blurred pages, a good image of the page can be found in the adjacent frame. If
copyrighted materials were deleted, a target note will appear listing the pages in
the adjacent frame.

. When a map, drawing or chart, etc., is part of the material being photographed,

a definite method of “sectioning” the material has been followed. It is
customary to begin filming at the upper left hand corner of a large sheet and to
continue from left to right in equal sections with small overlaps. If necessary,
sectioning is continued again—beginning below the first row and continuing on
until complete.

. For illustrations that cannot be satisfactorily reproduced by xerographic

means, photographic prints can be purchased at additional cost and inserted
into your xerographic copy. These prints are available upon request from the
Dissertations Customer Services Department.

. Some pages in any document may have indistinct print. In all cases the best

available copy has been filmed.

Uni i
I\v/ﬁrc%yﬁlms
International

300 N. Zeeb Road
Ann Arbor, Ml 48106

8409574

Calamari, Mary Diane Bodin

A COMPARISON OF TWO METHODS OF TEACHING COMPUTER
PROGRAMMING TO SECONDARY MATHEMATICS STUDENTS

The Louisiana State University and Agricultural and Mechanical Col. PH.D.

University
Microfilms
International swn. zees Road, Ann Arbor, mi 48108

1983

PLEASE NOTE:

In all cases this material has been filmed in the best possible way from the available copy.
Problems encountered with this document have been identified here with acheck mark __ v .

—d
.

Glossy photographs or pages

Colored illustrations, paper or print_____

Photographs with dark background ______

lNustrations are poor copy

Pages with black marks, not original copy

Print shows through as there is text on both sides of page
Indistinct, broken or small print on several pages __é

Print exceeds margin requirements

© ® N o 60 & O D

Tightly bound copy with print lost in spine

-
o

Computer printout pages with indistinct print

-t
-

Page(s) lacking when material received, and not available from schoo! or
author.

12. Page(s) seem to be missing in numbering only as text follows.
13. Two pages numbered . Text follows.

14. Curling and wrinkled pages

18. Other

University
Microfilms
International

A COMPARISON OF TWO METHODS OF TEACHINC
COMPUTER PROGRAMMING TO
SECONDARY MATHEMATICS
STUDENTS

A Dissertation

Submitted to the Graduate Faculty of the
Louigiana State University and
Agricultural and Mechanical College
in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy

in

The Interdepartmental Program in Education

by
Mary Diane Bodin Calamari
B. S., Louisiana State University, 1961
M. Ed., The University of Southwestern Louisiana, 1969
Ed. S., The University of Southwestern Louisiana, 1978
December 1983

ACKNOWLEDGMENTS

The writer gratefully acknowledges the assistance of
Dr. B. F. Beeson, major professor, for his advice, confi-
dence, and encouragement during this study. Appreciation
is directed to other members of the doctoral committee for
their guidances Dr. Stephen M. Buco, Dr. Donald H. Kraft,
Dr. Richard Lomax, Dr. Anthony W. Romano, and Dr. John A.
Hildebrant, minor professor.

Additional expressions of gratitude are due to school
officials in St. Mary Parish, to the principals of Berwick
High School, Franklin Senior High School, and Patterson
High School, to those mathematics teachers who 2llowed me
to teach their students programming, and to the students
who participated in the study. Appreciation is extended
to the instructor and students in the computer science
class at University High School in Baton Rouge, Louisiana,
for field testing the evaluation instrument. The writer
acknowledges the aid of those people who secured a computer
for use in the study.

Gratitude, appreciation, and thanks are given to family
and friends who provided encouragement whenever this was

needed.

ii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS L] L] . [] L L] L) L] [] L] L] L)

LI ST OF TABLES L] L] . L] L] L L] ® L L L L] [

LIST OF FIGURES =« + « ¢ o s o o o o o &

ABST RACT] L L] L] L] L] e L L) . L] L] L]] [] []

Chapter

1.

INTRODUCTION &« ¢ o ¢ s o o o
STATEMENT OF THE PROBLEM . .
CONCEPTUALIZATIONS =« o o« o

REVIEW OF RELATED LITERATURE .
COMPUTERS AND PROGRAMMING . .
PROBLEM SOLVING « o« o s o o
COMPUTERS AND MATHEMATICS . .
INITTAL INFORMAL PROGRAMMING
LOGO o« ¢ o o ¢ o o ¢ o o s o
THE BASIC LANGUAGE . « + .« »

DESIGN OF THE STUDY « « o« o« o &
THE SAMPLE =« « o ¢ ¢ « ¢ o &«
THE TREATMENT « « o ¢ o o« o o
THE INSTRUMENT « « o« o ¢ o &
THE STATISTICAL PROCEDURE . .

PRESENTATION AND ANALYSIS OF DATA

RESULTS L] L] L] L] L] L] L] L L] L] L]
AN ADDITIONAL OBSERVATION . .

iii

Page

ii

vi

vii

S N0 N N e

21
26
28
31
33
33
34
38
40
L1
N2
bs

Chapter
5« CONCLUSION AND SUMMARY « ¢ o ¢ o o
CONCLUSION & s o o 5 o o s o o o &
SUMMARY o 4 o o o o s o o a o o » &
BIBLIOGRAPHY ¢« o 4 o o o o o s o s o s s s o
APPENDICES + « o s s o o ¢ o o s o s o o s s

A. Instrument Used as Pretest/Posttest on
BASIC Computer Programming .« .+ « o

B. Objectives for BASIC Programming Unit

C. Letter Granting Permission for Student
Participation in the Study . « .« .

D. Summary of BASIC Commands « « « s s o
E. List of Heuristic Strategies . « « o

F. Logo Commands and Sample Logo Programs

G. Item Analysis of the Evaluation Instrument

VITA e [] . L) .] L] - [] [] . L] L] . . [L] [] L .] L] [] .

iv

Page
46
L6
49
52
60

61
7’1

73
75
79
82
87
89

LIST OF TABLES

Table Page

1. Analysis of Covariance on the BASIC
Programming Scores of the Sample 44

Figure
1.
2,
3.

LIST OF FIGURES

Output of Logo Program Named SQUARE .
Output of Logo Program Named DESIGN .
Output of Logo Program Named DESIGNZ .

vi

Page
84
85
86

ABSTRACT

This study was formulated in order to gain information
about the effectiveness of two methods of instructing sec-
ondary mathematics students in introductory computer pro-
gramming. Investigation of programming instruction in a
reduced period of time was a major component of the study
for those educators who choose to teach programming as a
portion of a mathematics course must do so under time con-
straints.

The research was conducted in three public secondary
schools in St. Mary Parish in Louisiana. The subjects
were enrolled in an algebra II or a geometry class during
the spring semester of the 1982-83 academic year. An
experimental-control group, pretest-posttest design was
employed in the study. The experimental group was composed
of sixty-nine students, and the control group consisted of
sixty-two students.

The purpose of this experiment was to investigate the
effect of two methods of teaching computer programming
using the BASIC language. Subjects in the experimental
group received instruction in the turtle graphics component
of Logo, a simple language designed for a child's initial
computer experiences, and they designed two programs using
this language. The Logo phase of the treatment accounted

for approximately 25 percent of the total treatment time.

vii

For the remainder of the treatment period of nine hours the
experimental group received instruction in BASIC, and the
students created programs in that language. The control
group was taught to design programs in BASIC only so that
all of the programs created by the subjects in the control
group were in BASIC. Treatment for both groups was con-
ducted by the researcher.

A pretest on computer programming in BASIC was admin-
istered to the subjects on the first day of the experiment,
and the participants completed a posttest immediately after
the treatment. The evaluation instrument was designed by
the researcher, field tested in a secondary school, and
validated by a panel of experts.

Analysis of cqyariance was performed on the scores
obtained on the BASIC programming posttest using the pre-
test score as covariate. The students who had received
instruction in BASIC alone exhibited significantly higher
achievement than those taught Logo and BASIC. No signif-
icant difference was found in the scores of samples of
algebra II students and geometry students nor in samples
of males and females who received instruction in program-

ming by each of the two methods of study.

viii

CHAPTER ONE
Introduction

Computer technology influences the everyday lives of
many people, and there is no evidence that its impact will
lessen in the future. Computer applications are utilized
across a broad spectrum of occupations in the United States
and throughout the world. Harold G. Shane {1982) reports
that information workers constituted about half of the total
labor force in 1980. These workers include handlers of in-
formation and dispersers of communications. The percentage
of people employed in information occupations has steadily
increased during the last decade. Since secondary students
are the labor force of the future, many schools are purchas-
ing inexpensive microcomputers in order to provide computer
experiences for their students. Thus, the influence of the
computer is directly involved in the education of children.
Although there are several educatioﬂal uses for computers
including computer assisted instruction, administrative
applications, and computer programming, the one way by which
a person can control the electronic device is by learning
how to program. Computer programming, then, becomes a

component of the secondary school curriculum.

In many secondary schools students are given the

opportunity of receiving instruction in introductory com-
buter programming. Often it is the mathematics teacher who
interweaves programming and mathematics because computer
applications in this field are obvious. The task is‘acéom—
Plished when the teacher emphasizes problem solving as an
essential component of mathematics and utilizes the com-
buter as a problem solving tool. The computer is an ideal
device for teaching mathematical thinking through problem
solving (e.g., Norris, 1981; Piele, 1982; Wold, 1983) and
thus the mathematics classroom contains an instructional
tool of major importance. Use of the computer in this man-
ner requires that students design programs to serve as the
solution to their problems. Thus, the mathematics teacher
must also be a teacher of fundamental computer programming.

The secondary mathematics instructor must select a
method of teaching introductory programming in a reduced
period of time because computer work is only a portion of
the content of the mathematics course. Since BASIC is the
most popular computer language used today {(Wold, 1983),
instruction is most likely to be in that language. Even
though these students may be rather mature, they are nov-
ices at programming and must begin at the lowest level
regardless of their chronological age.

Several K-12 computer literacy plans note the progres-
sion found in the formation of computer competency. One

of these programs teaches Logo as an elementary language in

lower grades followed by instruction in BASIC (Fisher,
1983), while a secondary school in Massachusetts uses Logo
as an introductory language in the regular computer science
class (Watt, 1982b). The traditional method of teaching
BASIC programming involves instructing the students in that
language exclusively. This study investigates these two
methods of teaching introductory computer programming to
secondary mathematics students.

Two programming languages, BASIC and Logo, are designed
for initial instruction in programming because of their
simplistic nature. BASIC was originally developed at Dart-
mouth College by John Kemeny and Thomas Kurtz in the middle
1960s. The language was adopted by several time-sharing
systems which compelled many users to become familiar with
it. The greatest impetus to the use of BASIC came in the
mid-1970s when the microcomputer was invented. Nearly all
microcomputers are equipped with a BASIC interpreter so that
BASIC is their standard host language. The simplicity and
convenience of BASIC has been a significant factor in the
popularity of the microcomputer (Gottfried, 1982). Most
students in introductory programming classes at the second-
ary level are taught BASIC.

An intehsive course in BASIC programming was offered in
a college for a shortened period of time. Glassboro State
College in New Jersey offered a college-~level, twelve-day

BASIC programming course between semesters in 1979 to avoid

4

overcrowding in the regular class (Masart, 1981-82). Stu-
dents in this shortened class showed achievement in program-
ming equal to or greater than that of students in the regu-
lar semester class. Thus, students can learn to program in
a compressed period of time.

A simple, special purpose language dedicated to the
education of children was developed by Seymour Papert at
Massachusetts Institute of Technology. Logo,was originally
designed for lower elementary children, but it has been
used as a teaching tool throughout elementary school and
even with older children and adults (du Boulay and Howe,
1981; Solomon, 1975; Watt, 1982b). A major component of
Logo, called "turtle graphics", consists of a few commands
that produce graphical output when a program containing the
commands is executed. The output is specified by stating
translational and rotational vectors. Although the language
was designed for use with young children, Logo could be used
profitably in secondary schools because of its relation to
polar coordinates and vectors.

The developers of Logo performed a comprehensive study
of the effect of learning the language on both programming
and mathematics achievement of sixth graders at the Lincoln
School in Brookline, Massachusetts, during the 1977-78
school session (Papert, Watt, di Sessa, and Wier, 1979).
Every sixth grader was taught Logo, and, in addition, six-

teen students were singled out for more extensive gtudy.

Six of these students scored below average on achievement
tests and were rated as below average by teachers; six were
labeled “above average"; the remaining students were aver-
age. The students received four hours of Logo training per
week for from four to eight weeks.

The objectives for the computer programming phase of
the experiment are relevant for they demonstrate the expec-
tations of the designers of Logo who feel that students
should achieve the following goals:

(A1) The idea of computer programming in a formal

language; its syntax, effect, and associated error

messages; the LOGO commands FORWARD, RIGHT, etc.

and the arithmetic operations;

{(A2) The idea of sequential procedure and the

ability to translate an informally defined plan

into a working program; the LOGO commands TO, END;

{A3) The use of subprocedures and superprocedures;

(A4h) Editing and debugging; LOGO commands EDIT,

PO, POTS, etc.;

(B1) Control of continuing processes with loops

and/or recursions;

(B2) Use of variables;

(g&) Conditionals and stop rules; and

(B4) Writing interactive programs. (Papert et al.,

1979+ 11)

Only two of sixteen students failed to meet the objectives
listed for minimum programming proficiency, those which are
indicated as Al through A4. Both of these students were in
the lower quartile in school performance (Papert et al.,
1979: 20). This provided evidence that Logo can be used to
teach the concept of a computer program and initial comput-
er programming skills.

Children seem to enjoy Logo, and many users of the

language have consolidated to exchange ideas. One user
group is composed of young people involved in an adult-like

organization. This club is described in Educational

Computer Magazine (1982). The Young Pcoples' LOGO Associ-

ation was formed in Richardson, Texas, by a man and his
learning disabled son. The original purpose of the group
was to serve as a central repository for Logo software;
secondary goals include promoting the educational use of
computers and training the handicapped. This association
has developed an apprentice program for secondary students
who desire a career in computer science where they are
taught Logo as a supplementary programming language {Muller
and Muller, 1982). Larry, a learning-disabled eighth
grader, is able to program a computer and enjoys doing it.
Computer programming, then, is not restricted to the intel-
lectually elite.

The BASIC programming achievement of students who learn
Logo before learning BASIC is compared to the achievement
in BASIC programming of students who are taught the BASIC
language exclusively. Since purchasing the Logo language
option for a microcomputer is an added expense, the effec-
tiveness of its use in programming instruction at the sec-

ondary level should be investigated.

Statement of the Problem

This study compared the achievement in BASIC computer

programming of secondary mathematics students who were
taught both BASIC and Logo to those instructed only in
BASIC. The experimental group designed programs in the
Logo language for a specified period of time before creat-
ing programs using the BASIC language. The control group
programmed in BASIC for the entire treatment period. The
measured criterion was the score achieved on a BASIC pro-
gramming test prepared by the researcher.

The following hypotheses were tested:

1. There is no significant difference in achievement
in BASIC computer programming between secondary mathematics
students who are taught programming using BASIC after they
learned Logo and those who are taught programming using
only BASIC,.

2., There is no significant difference in computer pro-
gramming achievement between secondary geometry students
and secondary algebra II students.

3. There is no significant interaction between type of
mathematics course (algebra vs. geometry) and type of treat-

ment (BASIC with Logo vs. BASIC alone).

Conceptualizations

Logo or LOGO is a simple, special-purpose, high level

programming language with relatively few commands that was
designed to be an initial programming language for children.

Turtle graphics commands in Logo consist of words denoting

direction and numerals to designate angles or amount of
lateral motion. Logo produces primarily graphical output.

BASIC, Beginner's All-Purpose Symbolic Instruction Code,
is a general purpose, high level, initial programming lan-
guage that includes commands for numeric, character, and
graphical output. Instructions in BASIC consist of alge-
braic formulas or alphanumeric characters used in associa-
tion with certain English keywords and symbols for varia-
bles. BASIC programming can be used in a variety of appli-
cations in diverse fields.

A computer program is a step-by-step plan for solving a

problem written in a language that communicates with the com-

puter. Creating a program is called computer programming.

The term computer, in this study, refers to a microcom-
puter. A microcomputer has a relatively small amount of
accessible memory, often 64K or less, and is constructed so
that the central processing unit is an integrated circuit
on a microprocessor chip. It is a single user device.

The researcher considers a secondary student to be any

student enrolled in a geometry class or an algebra II class
in a 8t. Mary Parish public school regardless of the grade
placement of the student. The public schools in St. Mary
Parish that offer classes in geometry or algebra II are
Berwick High School, Centerville High School, Franklin
Senior High School, Morgan City High School, and Patterson
High School.

CHAPTER TWO
Review of Related Literature

Although there are over 17,000,000 microcomputers in
United States schools (Lias, 1982), there is little agree-
ment about who will teach computer skills in those schools.
This fact is obvious when one reviews the results of a
survey sponsored by North Texas State University in which
the chief education official of each of the 50 states re-
ported on the status of computer science certification in
his/her state (Taylor and Poirot, 1983). Responses to the
survey indicate that computer science certification as an
entity is available in only four states. Those states that
reported certification as part of another discipline listed
the areas of mathematics, business, science, and industrial
arts as those which could be combined with computer science
for certification purposes. In the states that had no re-
gquirements at all, mathematics was the subject area from
which most of the computer science teachers were recruited.

Since so much computer science is taught by mathematics
teachers, the subject frequently has a mathematical flavor.
In addition, many teachers are using the computer as a
problem solving tool in the mathematics classroom which

involves teaching students how to program and, most likely,

10

how to program in an abbreviated period of time. Investi-
gation of the effects of two methods of teaching program-
ming in a reduced time frame on student achievement was the

major research question of this study.

Computers and Programming

Several well-known national organizations have recog-
nized the importance of computer education by publishing
statements that reflect its significance. 1In 1972 the
Conference Board of the Mathematical Sciences Committee
recommended the institution of a computer literacy course
for all junior high school students followed by a BASIC
programming course that emphasizes problem solving (Hunter,
Kastner, Rubin, and Seidel, 1975: 276). This recommenda-
tion was conceived before the development of microcomputer
hardware so few schools were able to act on the statement.
The same viewpoint was found in a 1980 publication of the
National Council of Teachers of Mathematics which advocated
that "mathematics programs must take full advantage of cal-
culators and computers at all grade levels" (National
Council of Teachers of Mathematics, 1980: 8). Some of the
means recommended to accomplish this goal include the inte-
gration of calculators and computers into core mathematics
courses, the development of a computer literacy course for
all students to familiarigze them with the role of this

electronic device and its impact, and the formulation of a

i1

secondary computer science course of sufficient depth and
breadth to provide students with a background for advanced
work in computer science. Similar recommendations were
prepared by the National Council of Supervisors of Mathe-
matics {National Council of Teachers of Mathematics, 1978).

Each of these sets of recommendations was developed by
a national organization which serves mathematics education.
In fact, the history of the computer is closely tied to the
field of mathematics. Many of the pioneers in the develop-
ment of computers (e.g., Blaise Pascal, Gottfried Leibnitz,
Charles Babbage, Ada Countess of Lovelace, Howard Aiken,
John von Neumann, Stanislaw Ulam, John Kemeny, Patrick
Suppes, and Seymour Papert) were mathematicians (Piele,
1982: 132). The areas of mathematics and computer science
have been closely allied from the beginning.

A report from the National Council on Excellence in

Education, A Nation at Risks The Imperative for Educational

Reform, stated that all United States secondary schools
should emphasize five basic skills, English, mathematics,
science, social studies, and computer science {Morning
Advocate, 1983: 1) in order to improve the quality of educa-
tion in American schools. This committee recommended re-
quiring one-half unit of computer science for all students.
Thoughts of computer science as a basic skill have been
expressed by other individuals prior to the report of the

National Committee on Excellence in Education. In 1981,

12

Arthur Luehrmann, then the associate director of the
Lawrence Hall of Science at the University of California at
Berkeley and outspoken advocate of teaching computer pro-
gramming to all students, expressed the following argument
for including computing in the school curriculum:
Computing belongs as a regular school subject

for the same reason that reading, writing, and

mathematics are there. Each one gives the student

a basic intellectual tool with wide areas of appli-

cation. Each one gives the student a distinctive

means of thinking about and representing a problem,

of writing his or her thoughts down, of studying

and criticizing the thoughts of others, and of re-

thinking and revising ideas, whether they are em-

bodied in a paragraph of English, a set of mathe-

matical equations, or a computer program. Students

need practice and instruction in all these basic

modes of expressin% and communicating ideas.

{(Luehrmann, 1981: 686)
In an earlier report Luehrmann predicted that the "ability
to use computers will be judged a basic skill in the near
future" (Luehrmann, 1980d: 154), but he bemoaned the lack
of a recognized curriculum for teaching computer skills and
the absence of a method to measure competency in computing.

Another educator, Eileen K. Gress, identifies computer
literacy as a basic skill and reports that she is certain
that some form of computer education will become a part of
the school curriculum (Gress, 1981). In an often-quoted
story, Luehrmann {(1980c) makes the point that computing is
as necessary to a person as is the skill of writing. In
order to assert the significance of every student posses-

sing computer skills, Luehrmann describes the unique

13

content of a computer class by pointing out that:
The next step will be the creation of new

courses specifically to teach the ordinary students

«+« how to use computers for a variety of tasks,

poth numeric and non-numeric. These 'basic comput-

ing gkills' courses will teach about algorithms,

writing and debugging programs, running simulation

models, editing text, and drawing graphs and

pictures. (Luehrmann, 1980a: 145)

Some of the skills acquired in computer classes can be pre-
sented easily in conjunction with the electronic medium,
but the same skills are presented with much difficulty
elsewhere in the curriculum.

Two school officials in New York envision the day when
each American chiid will own at least one personal computer
{(Sobol and Taylor, 1980: 155), and Judith Hopper, a junior
high school teacher in Colorado, sees computer education as
necessary for the future citizen so that he/she will have
"better career opportunities and less career shock"
(Hopper, 1980: 62). Several educators consider a person to
be computer literate only if his/her education contains
some programming (e.g., Reitz, 1983; Watt, 1982c). Gay
Reitz, an elementary school teacher in New York, views pro-
gramming as the only method by which children can under-
stand and use computers in a realistic manner (Reitz, 19831
26)., Daniv Watt (1982a: 45) describes the advent of the
microcomputer as an impetus for offering computer program-

ming to students of all ages.

Donald Norris {1981), a college professor from Ohio

14

University, proposed that college preparatory mathematics
be altered by replacing plane geometry with computer pro-
gramming. This would mean that the core courses in mathe-~
matics for the college-bound student would include two
years of algebra and one year each of computer programming
and a precalculus survey. Electives to this proposed cur-
riculum could include plane geometry, calculus, or a higher
level computer class. Some of the benefits accrued from
learning to program a computer include practice in logic
and precision (Sobol and Taylor, 1980), two of the reasons
often expressed for studying plane geometry. Since program-
ming allows students access to the computer and since use
of the machine motivates the student, Atchison (1978) asks
that teachers structure courses so that students begin
actual work on the computer within the first few days of
class.

There are many other benefits of teaching computer pro-
gramming, Programming allows the operator to control the
machine {(Luehrmann, 1980c; Watt, 1982c); this feeling of
control over technology gives a student self-confidence
{Watt, 1982c). Other aspects of learning associated with
computer programming involve the development of a set of
problem solving strategies, gaining an understanding of the
subject matter of the program, and studying about abstract
machines (Abbott, 1979; Sobol and Taylor, 1980; Watt,

1982c). In a statement presented to the House Committee on

15

Science and Technology, Arthur Luehrmann described the
skills acquired when one learns how to use the computer as
"programming, structural thinking, and critical evaluation
of computer applications... skills that are presently lack-
ing in the public..." {Luehrmann, 1980b: 137). Development
of problem solving skills through programming is identified
by Eileen Gress, a mathematics teacher in New York, as the
area of greatest computer impact (Gress, 1981: 42).

Beverly Hunter (1982) conducted a review of computer
education historically from 1949. Highlights of the his-
tory include the organization of the first computer class
in a secondary school in 1961, the invention of the BASIC
programming language in 1963, and the development of the
personal computer in 1975. In 1963 only 13 percent of the
secondary schools in the United States used computers in
some form of instruction; by 1973 the figure had risen to
26.7 percent. The relatively short history of computer
education accounts, in part, for the lack of a standard
computer science curriculum and for the lack of agreement
concerning the content of computer skills courses. Robert
D. Gilberts, Dean of the College of Education at the Uni-
versity of Oregon, describes the "fourth or fifth gener-
ation of computers in the 'second computer revolution' for
the world" as the "first computer revolution for schools"
(Gilberts, 1982: 4). He suggests that the absence of so-

lidified usage of computers in education is due to the

16

high cost of hardware and the rapid changes in the technol-
ogy of the electronic machine.

A survey of students enrolleq in a computer education
program taught at seventy-four secondary schools in Yugo-
slavia revealed that half of the student respondents
thought that all students should take computer science
classes; 33 percent replied that computer science should be
an available elective (Bratho, Rajkovic, and Roblek, 1975).
Thirty-four percent of their teachers responded that
computer science should be a required course; 48 percent of
them thought that it should be an elective. Whether
computer science should be a necessary component of general
education yielded a more pronounced trend where 87 percent
of the students and 91 percent of the teachers viewed
computer science as an essential part of general education.

Daniel Watt (1982a) points out that many colleges will
soon require computer programming for admission as Harvard
does now. Since preparation for college is one of the
goals of secondary education, programming will be empha-
sized more in pre-college education from necessity if not
from perceived benefits. A survey of teachers in Minnesota
revealed that only 32 percent of Minnesota teachers thought
that all students should be able to write a computer pro-
gram (Hansen, Klassen, Anderson, and Johnson, 1981: 469).
Results of the same survey indicated that mathematics

teachers in Minnesota use computers in their classes to

17

teach terminal operation, programming, and student problem
solving, in that order. Other surveys on computer usage
report that computers are utilized in Montana to teach
mathematics, computer education, and programming {Dolan,
198231 58), and that throughout the nation the most popular
educational uses of computers are in mathematics as
reported by 79 percent of the schools surveyed and in com-
puter science as indicated by 53 percent of them (EL News,
19823 12). The latest National Assessment of Educational
Progress reports that only 14 percent of 13-year old youths
and 12 percent of 17-year olds had any computer instruction
in their mathematics class while only 12 percent of junior
high respondents and 25 percent of the older students had
access to computers in their schools {Carpenter, Corbitt,
Kepner, Lindquist, and Reys, 1980: 671). Thus, the percep-
tion of the significance of education in the use of the

computer has not been realized.

Problem Solving

Frequently an educational belief is characterized by a
slogan. In the 1980 yearbook of the National Council of
Teachers of Mathematics the following statement was mades

In the late fifties we had the 'revolution in
mathematics'; in the sixties we had 'modern math';

in the seventies it was 'back to basics.' As we

enter the eighties, the theme appears to be 'prob-

lem solving.' (Krulik, 19803 xiv

If this prediction proves to be accurate, problem solving

18

will be a major concern of mathematics educators.

David Moursund {1980: 127) describes the computer as a
"universal tool, a new aid to problem solving." The role of
the computer in this significant area was described in a
paper presented at the International Foundation for Informa-
tion Processing TC-3 Working Conference on Informatics and
Mathematics in Secondary Schools in 1977 and summarized by
the following statement:

A sound approach to problem solving is perhaps one

of the most important things that can be taught at

any level., It's quite natural to develop this in

computer science and, in particular, in the wvari-

ous levels of programming. This is certainly an

area where mathematics and computer science can

work cooperatively in developing a student in his

problem solving ability. (Atchison, 1978: 28)

Donald Norris expresses the same idea when he states that
"it requires a tremendous amount of problem-solving ability
to make a computer solve a problem" {Norris, 1981: 26).
Eileen Gress (1981) points out that the process of devel-
oping a computer program encourages divergent thinking and
creativity, two skills needed for successful problem
solving.

After noting that teaching problem solving skills is
one of an educator's most difficult tasks, Daniel Watt
(1982c: 130) describes computer programming as an "eXxcel-
lent means for developing problem-solving strategies.”

Watt refers to problem solving techniques as espoused by

George Polya and others {e.g., Hughes, 1976; Newell and

19

Simon, 1979; Pereira-Mendoza, 1979; Polya, 1957; Polya,
1962; Polya, 1965; Robison, Tuckle, and Brison, 1972;
Rubinstein, 1975; Wicklegren, 1974). Some of the specific
heuristic skills (see Appendix E for a list of Polya's
heuristic stretegies) which are practiced when one writes
a program are subdividing the problem into parts, creative
intuition (i.e., because a program is seldom perfect when
it is first written), and debugging (i.e., testing, compar-
ing to expected results, revision, which correspond to
Polya's "looking back strategies"). Since the computer
provides immediate feedback, the learner knows without
being told if a given plan for solving a problem needs
revision or not. Thus, computer programming is a vehicle
for teaching problem solving because creating a computer
program, testing it, and modifying it requires the same
approach and strategies as does heuristic problem solving.
The link between computer programming and problem
solving is the algorithm. According to Horn and Poirot
(1981: 187), an algorithm is "a procedure for crganizing a
logical series of steps to solving a problem. Logic is a
problem-solving term that refers to patterns for doing
things in a specific order because it is reasonable to do
them that way." Development of the algorithm is the most
important and most difficult step in solving a problem.
The task of the programmer, as described by Terry Winogard,

is "to design an algorithm {or a class of computations) for

20

carrying out a task and to write it down as a complete and
precise set of instructions for a computer to follow"
(Winogard, 1979: 391). The algorithm which precedes the
writing of a computer program is that same concept that is
described by Polya as "devising a plan."

Arthur Luehrmann (1980d:s 154) states that a person who
can devise an algorithm and communicate it to the computer
is the possessor of "a new intellectual tool of basic impor-
tance to virtually every subject matter now being taught."
Such a person has a distict educational advantage over those
who cannot use a computer in this constructive, analytical
mode." In a 1974 article describing the relationship
between mathematics and computer science, Donald E. Knuth
considers the algorithm as the most significant discovery
of the computer age and relates that "an algorithmic point
of view is a useful way to organize knowledge in general"
{Knuth, 1974: 323). He also characterizes the knowledge
acquired from programming in the following manners

A person well-trained in computer science

knows how to deal with algorithms; how to con-

struct them, manipulate them, understand them,

analyze them. This knowledge prepares him for

much more than writing good computer programs;

it is a general-purpose mental tool which will

be a definite aid to his understanding of other

subjects. {Knuth, 1974: 326}

The algorithmic approach as manifested in creating computer

programs becomes an important benefit received by those

students who learn computer science.

21

Referring to his twelve years of experience in computer
education, Luehrmann (1980bs 139) states that a student who
designs a computer program to solve a problem "nearly
always has a better understanding of the problem than he or
she got from a purely verbal or a purely mathematical
description... there is an intellectual dimension to com-
buter problem solving." Other educators indicate the sig-
nificance of computers in problem solving and their place
in the total school setting. Piele (1982: 133) speculates
that "mathematical problem solving - constructing algo-
rithms and running them on a computer - will become an
accepted part of the mathematics curriculum." Soloway,
Lochhead, and Clement {1981) advocate the inclusion of
computer programming in the mathematics curriculum or the
complete integration of algebra and programming. Several
educators see the computer as a viable tool for teaching
that most important and most difficult area of mathemat-

ics - problem solving.

Computers and Mathematics

As additional evidence of the close association between
mathematics and computer studies, the 1977-78 National
Assessment of Educational Progress examination in mathemat-
ics included four quéstions that tested programming skills
(Carpenter, Corbitt, Kepner, Lindquist, and Reys, 1981).

Thus, those who devised the examination realized that

22

computer programming is a probable component of the mathe-
matics curriculum by including some computing items on the
mathematics assessment.

A critic of the manner in which computers are used in
mathematics classes, David Moursund, chairman of the Associ-
ation for Computing Machinery Elementary and Secondary

Schools Subcommittee and editor of The Computing Teacher,

notes that computers are merely an "add-on topic" because
little change has occurred in the content of mathematics
classes because of computers. This same situation is found
in both business and science classes, also. He advocates
that "... content and coursework for every discipline needs
to be rethought and redone in the light of computers and

their capabilities" {Moursund, 1980: 128). 1In Mathematics

Teaching Maurice Hart {1982) reports on the Nottingham
Programming in Mathematics Project conducted in England in
which children learn BASIC programming before they study
algebra so that they can use the concept of a variable as a
storage location. In this project the concept of a vari-
able has been altered from its traditional view as an ele-
ment of a domain or replacement set.

An experiment performed at the University of Massachu-
setts at Amherst relating computer programming to solving
algebraic word problems is reported by Soloway, Lochhéad,
and Clement {1982). A computer science class of college

freshmen and sophomores was divided in half for the purpose

23

of presenting a problem in different formats. Each group
received a problem having the same content, but for one
group the problem was presented as a computer program to be
created whereas the other half of the same class received
the problem in verbal algebraic terms. 8Sixty-nine percent
of the 52 subjects correctly wrote a BASIC program to solve
the problem, but only 46 percent correctly solved it alge-
braically. The difference in performance is significant at
the 0.05 level. This is a fruitful field for exploration
since "there is no area in algebra which causes students as
much difficulty as word problems {Johnson, 1976 i).

A second experiment conducted by Soloway, Lochhead, and
Clement {(1982) involves the interpretation of a word prob-
lem. The evaluated questions were embedded in a test taken
by freshman engineering students. For each of two questions
students were asked to read and explain an algebraic formula
In problem 1 the formula was presented as a stand-alone
entity with each variable identified (the traditional mathe-
matical way), but in problem 2 the formula was part of a
computer program with the variables identified in the pro-
gram specifications. The formulas used in each problem had
the same format {e.g., A = 7S and K = I*2) even though dif-
ferent subject matter was invoked. The researchers were
interested in those students who missed one of the problems
thus illustrating a difference in the two approaches. Five

subjects responded correctly to problem 1 only, but 18

24

students correctly answered problem 2 only. This differ-
ence is significant at the 0.005 level. These results are
important to mathematics teachers because they show promise
for improving instruction in problem solving.

The researchers mentioned several reasons for improved
problem solving in a programming environment (Soloway,
Lochhead, and Clement, 19823 179). The explanations include
consideration of the requirements imposed upon the user by
the programming language such as definite, unambiguous,
explicit syntax and semantics and of the programmer's
approach to the problem where an equation is viewed as the
transformation of an input to an output. Requirements for
effective programming such as decomposing the problem spec-
ifications into small steps in order to design a program to
solve it and analyzing both the problem and its solution
when debugging a program are additional practices that
enhance problem solving with computer programming.

Douglas Davis (1980), a physics professor at Eastern
Illinois University, reports on the use of computer program-
ming and numerical analysis to teach a course in traditional
classical mechanics. During the first week of the class the
students were taught enough BASIC to write, run, and debug
simple programs. Thén they used the computer to solve the
physics problems that composed the subject matter of the
class. Douglas points out that students found computer work

to be both challenging and enjoyable; students in this

25

computer-based class gained a deeper understanding of the
concepts illustrated in the problems.

At the University of Minnesota computer programming is
used to teach number theory. Sabra S. Anderson (1982: 91)
describes this instruction as discovery teaching in the
spirit of Polya. After each topic is introduced, a computer
Project on the topic is completed. Then the topic is dis-
cussed followed by synthesis, proofs, and unsolved problems.
Programs such as the determination whether a given number is
prime or composite are used in the class. A class prerequi-
site is a knowledge of BASIC or FORTRAN programming lan-
guage.

If a secondary mathematics teacher wishes to implement
computer-aided problem solving, he/she must provide the stu-
dent with instruction in programming because most high
school courses do not have an extensive set of prerequi-
sites. This involves a portion of the mathematics class
that is not directly devoted to instruction in mathematics.
Since all microcomputers are equipped with a BASIC inter-
preter, this instruction will most likely be in BASIC. Gen-
erally the programming unit is taught for a specified,
shortened period of time. When choosing the content of the
programming unit, the teacher should consider the statement
by Herb Nickels {1980), the instructional computing coor-
dinator at California State College in San Bernadino, that

ten percent of the legal commands of a programming language

26

constitute ninety percent of the code in that language. He
lists the essential commands for BASIC as "PRINT, INPUT,
LET, GOTO, IF...THEN, DATA, READ, FOR, NEXT, DIM, GOSUB,
RETURN, and REM" (Nickels, 1980: 158). Any unit of comput-
er programming in BASIC should contain at least this set of

commands.

Initial Informal Programming

Teachers are always searching for meaningful initial
experiences on a topic of study because one's first impres-
sion of a subject is often a lasting one. In the preface
of his textbook on informal programming for college stu-
dents, Richard E. Pattis {1981: vii) identifies the first
few weeks of a student's programming instruction as most
significant to that student's perception of the subject be-
cause at that time he/she can see the overall aesthetics of
programming and is flexible enough to react favorably to
new ideas.

Pattis' (1981) solution to this pre-higher language
stage in programming is to use a simple language with few
commands to move Karel the Robot across a grid that is su-
perimpcsed on the computer screen. The student is given a
problem in which the robot is to move to a specified loca-
tion, pick up or put down a beeper, and repeat some move-
ment or halt; five commands constitute the instruction set

used to accomplish this. The student's task is to create

27

a program using the command set to cause Karel to move as
specified in the problem. This informal programming lan-
guage 1s used at Stanford University for four days at the
beginning of an introductory programming class in Pascal.
There is much similarity between Karel and the turtle
graphics of the Logo language (Haney, 1981), and in the
preface of his book, Pattis thanks Seymour Papert and the
Logo research team for their influence on his thoughts
(Pattis, 1981 xij.

An advantage of using a simplified informal language
before studying a higher level language is that of immedi-
ate access to the computer for problem solving due to the
ease with which the language is learned. The student is
able to program a computer with confidence because the fun-
damentals of programming are taught in a simplified fashion
yielding a high probability of success in the initial pro-
gramming experience. The concrete notlion of moving a robot
across a screen is a realistic beginning point for the
novice. The study of Karel also provides beginners with a
programming mind set and an appropriate vocabulary to util-
ize in later study (Pattis, 1981).

Antfarm is a structured programming game that is used
to introduce a child to the concept of structured program-
ming before he/she learns a higher level language with the
hope that the child will transfer the knowledge to the

higher language (La France, 1980). The command set for

28

Antfarm has only five imperatives which can be used to mod-
ify existing programs. This language, like Logo, has pro-
cedures that are easily remembered and later combined to
compose a larger progralm.

At the University of Waterloo in Canada Farhad Mavaddat
{1981) uses mazeg with two instructions (STEP and RIGHT) as
a means of initial programming instruction. This format
allows study of sequencing, procedures, looping, and con-
ditional statements, all of which are important concepts
in program design. Students are presented a maze for which
they are to create a program to traverse it; instruction
with these mazes lasts from two to six hours. Mavaddat
(1981 : 49) encourages the use of this type of experience
because the student is removing the mystery of the computer
at the same time that he/she is learning how to construct

programs.

Logo

The Logo language was designed by Seymour Papert and
his colleagues at the Massachusetts Institute of Technology
as a vehicle for one's initial computer programming experi-
ence {(Papert, 1980). The language uses a simple command
set that can be employed to create sophisticated structured
programs and was developed for the beginner of any age
{c.f., du Boulay and Howe, 1981; Lough, 1983; Solomon,
19753 Watt, 1982b). Designed by a mathematician, computer

29

experiences with Logo place the learner in an educational
environment. The user is free to explore the programming
commands by trying them out and gaining immediate evalua-
tion. Research conducted at Lincoln High School in Brook-
line, Massachusetts, the Lamplighter School in Dallas,
Texas, and the New York public schools has shown that Logo
has a significant effect upon the development of problem
solving skills, the practice of verifying ideas and theo-
ries, and the understanding of mathematical concepts such
as those of variables, symmetry, and geometric shapes
(Lough, 1983: 50). Lough reports that the name "Logo" was
derived from the Greek word "logos" meaning thought or word.
This choice for the name of the language from the same root
as "logical" provides insight into the intentions of its
developers. The simplicity of the language is evident when
one examines the turtle graphics facet of Logo which is so
elementary that it can be learned through usage in an
interactive manner.

Interest in Logo was accelerated recently, and several
pefiodicals have published issues dedicated to Logo and its
use. These include the August 1982 issue of BYTE, the

November 1982 issue of The Computing Teacher, and the April

1983 issue of Classroom Computing; News. The feature arti-

cle in the March 1983 issue of Electronic Learning was on

the use of Logo for teaching programming to beginners. In

January 1983, The Computing Teacher began a regular section

30

called "The Logo Center." In an article in Classroom

Computing News, Ricky Carter (1983: 36) listed eight maga-

zines, fourteen magazine articles, six newsletters, eight
books, four forthcoming books, and four activity sources as
means to obtain information on Logo. Many educational com-
puting conventions have sessions and workshops devoted to
teaching with Logo. ;

Logo has been used successfully to teach mathematically-
deficient college students in Scotland certain mathematical
concepts (du Boulay and Howe, 1981). Average and below
average secondary students improved significantly on a
mathematics achievement test after completing a year of
Logo programming and a year of programming and mathematics
{Howe and Ross, 1981). At Lincoln-Sudbury Regional High
School in Massachusetts, Logo serves as an introductory
programming language (Watt, 1982b). Logo is also used as
an introductory programming language in the K-12 program
for developing computer literacy in the Alaﬁeda County
School District where BASIC is taught after students
receive instruction in Logo {Fisher, 1983). Logo, then,
can serve a double function by facilitating the acquisi-
tion of mathematics and problem solving skills as well as
programming skills.

Because of its versatility, simplicity, and power %o
motivate, Logo might prove to be "the most significant

educational software of the decade" (Lough, 1983: 49),

31

Mathematics teachers should become familiar with this lan-
guage and its potential for improving mathematics, problem

solving, and programming competencies.

The BASIC Language

Beginner's All-Purpose Symbolic Instruction Code or
BASIC was developed at Dartmouth College in the early 1960s
to instruct students with no previous experience in program-
ming (Andersen, 1982: 52)., Two components of the name of
the language are significant. The language is intended to
be used for introductory programming, and it is a versatile
tool that can be used to solve many types of problems.
BASIC is the most popular of the more than 150 computer
languages in existence today (Wold, 1983).

Many secondary schools offer a full year or a half year
of instruction in BASIC computer programming. However,
this time schedule cannot be used in computer-assisted
mathematics classes. Programming courses of shorter dura-
tion must be developed to use in mathematics classes. The
Freeport {Illinois) School District offers a nine-week
computer literacy course to all seventh graders in which
each student learns to write simple BASIC programs
{Bangasser, 1983).

An experimental program that is being conducted at
Virginia Military Institute supplements the content of a

finite mathematics course with computer applications

32

(Abernathy, Piegari, and Thorsen, 1980). Before entering
the class, each student takes four hours of BASIC program-
ming training; the class begins with four or five lectures
on BASIC followed by short talks about programming as is
necessary. Bach student has to complete eight programs on
matrices and probability as part of the course requirements.
A control group worked the problems without computers. The
computer programmers achieved a significantly higher score
on the twenty-one common questions from the final test for
the course.

Other short courses in computer programming have been
used in Jjunior high school, secondary school, and college.
At Homestead (Wisconsin) High School, every geometry stu-
dent is taught a two-week computer literacy unit with the
design of a computer program required as a final project
{Patton, Ortho, and Hopfensperger, 1981). A three-week
computer unit that is taught to students in grades seven
through nine devotes week three to the creation of a pro-
gram that the student can use in one of his/her other
classes (Joseph, 1979). The concentrated BASIC course
offered between semesters at Glassboro {(New Jersey) State
College produced programming achievement equivalent to
that of students who were enrolled in the regular semester

course {(Masat, 1981-82).

CHAPTER THREE

Design of the Study

The study was an experimental-control, pretest-posttest
design which was conducted using a sample of certain mathe-
matics students enrolled in the public schools of St. Mary
Parish in Louisiana. One hundred thirty-one students par-
ticipated in the study; 60 students were in classes that
received the experimental treatment, and 62 were in the

control group.

The Sample

The sample consisted of intact classes of geometry and
algebra II students that were randomly selected from the
total number of classes in these subjects as scheduled in
the five secondary schools of St. Mary Parish during the
1982-83 school session. For this school year fifteen sec-
tions of geometry and ten of algebra II were scheduled in
St. Mary Parish public schools (Jacquet, 1983).

The researcher randomly selected four geometry classes
and three algebra II classes to compose the sample. A set
of computer-generated random three-digit numerals which
designated the school, mathematical discipline, and section
number were used to select the classes for the sample. The

classes chosen were at Berwick High School (2), Franklin

33

34

Senior High School (2), and Patterson High School {3).

Each class was randomly assigned to either the experimental
or the control group. The researcher obtained permission
from the parents or guardians of each student for them to
participate in the study. A copy of the letter used to
obtain this permission is included in Appendix C. Approx-
imately 300 students were enrolled in geometry and 240 in
algebra II throughout the parish; the sample consisted of

62 algebra students and 69 geometry students.

The Treatment

The study was conducted during February and March of
1983 for a period of five weeks. Each class in the study
received instruction from the researcher in the normal
school setting. A 32K TRS-80 Color Computer and appropri-
ate Logo disk software was utilized to conduct the experi-
ment. The complete microcomputer system was assembled in
every class for demonstration and student programming.
Instruction was provided on Monday and Wednesday to four
classes and on Tuesday and Thursday to the remaining three.
Nine hours of programming instruction was provided. Pre-
test ... posttest administration took ninety minutes. Each
student was given a pretest on the first day of the study.
The same examination was used as a posttest after complet-
ing the five week treatment. If a student was absent for

pretesting, he/she was given programming instruction and

35

allowed to participate in the computer unit, but these
scores were not included in the data analysis. Both the
pretest and the posttest were scored by the researcher.

The control group was taught programming using the
BASIC language for the entire nine hour treatment period.
The researcher instructed the students in the syntax of the
language, on variables, looping, and arithmetic operations,
and in the use of the computer terminal. A list of the
objectives for the BASIC programming unit is found in
Appendix B. Instruction in BASIC and terminal operation
encompassed two and one-half hours of time for the control
group.

The experimental group was taught several fundamental
commands of the turtle graphics component of Logo including
directional commands, repetition commands, and the proper
use of variables. The Logo unit was prepared by the writer
using information found in "A Beginner's Guide to Logo"

(Abelson, 1982) and Mindstorms: Children, Computers, and

Powerful Ideas (Papert, 1980). Each class was divided into

five subgroups where each subgroup was provided time to
explore programming in Logo and to design two Logo programs.
The students in the subgroups were allowed to choose the
type of program that they wished to create, the only con-
straint being that the second program had to show repeti-
tion and/or use of one or more variables. Instruction and

experience in Logo programming composed about 25 percent of

36

the time devoted to instruction. The students placed the
programs that they had designed into the computer's memory,
executed the programs, and corrected errors or improved
upon the output, whenever needed. (See Appendix F for an
example of a typical Logo program and its output.) For the
remainder of the treatment, the experimental group had one
and one-~half hours of instruction in the BASIC language and
"hands on" experience in BASIC programming using the same
format as the control group.

In order %o contfol access to the computer, each class
was divided into five subgroups for the BASIC unit regard-
less of the size of the class. Each student was randomly
assigned by the computer to a subgroup within the class.
Group experience is thought to be a valuable means to learn
programming because of the practice of one person building
upon the ideas of another (Schneider, 1978). The BASIC
unit presented to each group was developed by the research-
er using Nickles' list of the thirteen essential BASIC com-

mands {(Nickles, 1980) and the book BASIC Programming Primer

(Waite and Pardee, 1982). Each group received identical
instruction in BASIC. Students were encouraged to use all

available references. The publications, Pocket Guide to

BASIC (Hunt, 1982) and The BASIC Cookbook (Tracton, 1978)
were provided for use during the class period. In addition
each subgroup was given an identical document that summa-

rized the BASIC commands studied. A copy of the summary of

37

commands is found in Appendix D.
The source of the problems to program in the BASIC mod-
ule was the book Problems for Computer Solution by Donald

D. Spencer (1977). This book was chosen because it was
written specifically to provide programming problems for
introductory classes. The pool of problems to be solved by
BASIC programming was the same for both the experimental
and the control groups.

The problems were typed on cards, and a member of each
subgroup selected the card which contained the problem to
be solved by that subgroup using a computer program. There
were 38 problems in two categories. Problems on green
cards required programs that concentrated on input/output
statements and that contained no more than one decision
component, while the programs designed to solve programs on
the yellow cards utilized several programming concepts.
Since the subjects were mathematics students, the problems
emphasized mathematical concepts of a general nature. If
a student needed help with the mathematics required to
solve a problem, this information was provided.

Each subgroup completed three problems from the pool of
green cards before they solved any on the yellow cards.
They completed as many programs as they could in the time
allowed. Since access to the computer was limited in that
there was only a single machine in each classroom, students

were encouraged to observe other subgroups working at the

38

computer. Thus, students were able to see the computer
solutions to problems other than the ones assigned to them.

No problems were repeated within the same class.

The Instrument

The evaluation instrument was prepared by the writer
after consulting with several teachers of computer program-
ming and with books designed to teach introductory BASIC
programming {e.g., Albrecht, Finkel, and Brown, 1978;
Blechman, 1981; Faulk, 1982; Fox and Fox, 1983; Golden,
1981; Jacobs, 1983; Nelson, 1981; Sage, 1969; Shelly and
Cashman, 1982; Smith, 1970; Waite and Pardee, 1982). This
provided a background from which could be prepared a set of
objectives for the unit on BASIC programming.

The objectives for the BASIC programming module encom-
passed the areas of programming style and requirements for
correct coding, development of instructions and data struc-
tures to perform specified tasks, algorithm development,
debugging, and several of the commands directed to the
operating system of the computer. Numeric and string var-
iables and one dimensional arrays were the data structures
utilized in the unit. The instructions covered in this
BASIC module included commands for input and output, arith-
metic operations, assignment of values, repetition of code
or looping, selection of one of several alternatives, and

modularization of code using subroutines. A copy of the

39

objectives for the BASIC computer programming unit is found
in Appendix B.

The researcher perpared a test from these objectives
and submitted it to a panel of experts for validation. The
panel consisted of Willis J. Bourque, professor of mathe-
matics at the University of Southwestern Louisiana, and
Merril T. Mims and Harriet G. Taylor of the Computer Sci-
ence Department of Louisiana State University.

The instrument was field tested at a high school in
Baton Rouge, Louisiana. Item analysis performed on the
responses to the examination produced a difficulty index
for each item in the range of 0.029 to 0.971 while the
index of discrimination was found to be between 0.006 and
0.571. These figures are generally within an acceptable
range although several items may be described as being
weak. Appendix G is composed of the results of the item
analysis on the evaluation instrument. The researcher set
the maximum amount of time required by any student to com-
plete the test in the field study as the time to allow for
the examination in the actual experiment. Subjects in the
study were allowed 45 minutes to complete the pretest and
the posttest.

Since students in computer science can be tested on
"knowledge of syntax, their ability to read and comprehend
a program, or their ability to write logically correct

programs" {(Lemos, 1979: 53), the researcher included items

Lo

that evaluated each of these components. A copy of the

examination is included in Appendix A.

The Statistical Procedure

Since the sample was composed of intact mathematics
classes, analysis of covariance where the pretest was used
as the covariate was the statistical method chosen. Using
this procedure results in a statistical correction on post-
test scores for factors that may have been present prior to
the treatment (Garrett, 1967; Lemos, 1981; Popham, 1967).

The analysis was performed on test data in order to
examine the following three hypotheses:

1. There is no significant difference in achievement
in BASIC computer programming between secondary mathematics
students who are taught programming using BASIC after they
learned Logo and those who are taught programming using
only BASIC.

2. There is no significant difference in computer pro-
gramming achlievement between secondary geometry student%
and secondary algebra II students.

3. There is no significant interaction between type of
mathematics course (algebra vs. geometry) and type of treat-

ment (BASIC with Logo vs. BASIC alone).

CHAPTER FOUR
Presentation and Analysis of Data

The purpose of this chapter is to indicate the results
of statistical analysis on the data obtained from the
administration of the BASIC programming test. This exam-
ination was given to all participants in the study as a
pretest in order to measure the achievement level of the
student prior to treatment. These pretest scores were used
as the covariate in the subsequent analysis of covariance.
After finishing the unit on BASIC programming, each subject
completed the same instrument as a posttest. Five weeks of
time elapsed between pretest and posttest. The scores of
only those students who took both tests were included in
the data analysis.

Since achievement in later programming courses is
enhanced significantly by a student's having computer
experiences in high school (Konvalina, Stephens, and
Wileman, 1983), the researcher identified several variables
to investigate in order to determine whether they affect
achievement in programming at the secondary level. Thus,
the statistical analysis was performed to consider the
following factors as independent variabiesx

1. treatment group - instruction in BASIC only,

hq

L2

instruction in BASIC following Logo

2. mathematics class of the student - algebra 1I,

geometry

3. sex of the student - male, female
The score on the BASIC programming posttest was the depen-
dent variable.

The researcher chose to consider the gender of the stu-
dent as an additional factor above those stated in the
hypotheses because research studies performed by Mazlack
(1975; 1980) that investigated factors related to aptitude
and achievement in introductory computer science included
gender as one of the factors to study. Although neither of
these research studies measured achievement in BASIC pro-
gramming, the results indicated that gender was not a sig-
nificant factor when introductory computer programming was
taught at the college level with FORTRAN. In contrast to
Mazlack's studies, the researcher sought to investigate
the significance of the sex of the student on achievement

in BASIC programming at the secondary level.

Results
The statistical technique used to evaluate the results
of the experiment was analysis of covariance. A three
factor factorial design where the factors considered were
group, class, and sex was employed to determine if signifi-

cant main effects and/or interactions occurred between any

43

of these factors.

The covariable, pretest, yields an F-value of 9.85
which is significant at the 0.01 level of confidence.
Therefore, analysis of covariance using the pretest score
as covariate is the proper statistical method to use with
the data obtained from this experiment.

The only significant difference found in the adjusted
bosttest scores was on data from the total sample that was
analyzed according to the type of treatment that was em-
ployed. Analysis of data from the experimental and the
control groups produced an F-value of 4.80 which is signi-
ficant at the 0.05 confidence level. The adjusted means
are 23.528 for the control group (N = 62) that received
instruction in BASIC only and 21.435 for the experimental
group (N = 69) that was taught Logo before BASIC. Thus,
the group that received instruction in BASIC exclusively
showed significantly greater achievement on the BASIC pro-
gramming test than the students in the group that was
instructed in Logo before they were taught BASIC.

No significant difference was found between the current
mathematics class of the student and his/her achievement in
BASIC programming as measured in this study. Analysis of
data that related the mathematics class of the student
(geometry or algebra II) to posttest scores yielded an
F-value of 0.87. Adjusted means are 22.930 for the algebra

students (N = 62) and 22.032 for the geometry students

Table 1
Analysis of Covariance on the
BASIC Programming Scores of

the Sample

Ll

Analysis of Covariance

Source of Sum of
Variation df Squares
Group 1 136.098
Class 1 24,684
Sex 1 8.684
Group#Class 1 0.025
Group#*Sex 1 26,189
Group#Class*Seix 1 22,430
Pretest 1 279.136
Error 122 3457.259

* gignificant at 0.05 level
*#% gignificant at 0.01 level

F-Value

4.80
0.87
0.31
0.00
0.92
0.79
9.85

33

45

(N = 69).
None of the interactions yilelded significant results.
Table 1 contains the values found by analysis of covariance

on posttest scores with the pretest score as the covariate.

An Additional Observation
Since much current literature focuses on sex differ-

ences in mathematics and since there is a close relation-
ship between mathematics and computer science via problem
solving, the investigator chose to consider the gender of
the student as an independent variable in the study. Anal-
ysis of covariance using sex as a factor yielded no signi-
ficant difference in BASIC programming achievement between
the males and the females in the sample. The F-value was
0.31. The adjusted posttest mean score for the males v
(N = 64) was 22.746 whé;eas that for the females who par-
ticipated in the study (N = 67) was 22.217.

CHAPTER FIVE
Conclusion and Summary

This study investigated two methods of teaching intro-
ductory computer programming to secondary mathematics stu-
dents. The methods utilized to teach BASIC programming
were instructing the students in BASIC programming after
they had learned to program the computer using Logo and
teaching the BASIC language exclusively. Statistical anal-
ysis was performed on the total sample and on subsamples of

algebra ITI and geometry students and of males and females.

Conclusion

The results of the experiment indicate that some factor
is responsible for the higher achievement in BASIC program-
ming exhibited by students in the total sample who received
instruction in the traditional manner of being taught only
BASIC compared to those students instructed in Logo before
being taught BASIC, but the current mathematics class or
the sex of the student is not the significant component.
The researcher speculated that the geometric orientation of
students enrolled in that class would cause Logo to be a
more effective teaching mode for them than for the algebra
students, but the results indicated no significant inter-

action between programming groups and classes.

Le

by

Even fhough the unit consisted of mathematics problems
that were solved by computer programming, two traditionally
male~dominated areas, no significant difference was found
in the BASIC programming achievement of male and of female
participants. Future research could center upon the ques-
tion of achievement of female students related to the sex
of their instructor. Results such as the ones found in
this study could help to eliminate sex stereotypes that
exist in the fields of mathematics and computer science.

Additional research might isolate the causative factor
for the difference in BASIC programming achievement exhib-
ited by the total sample. Possible factors to be consid-
ered include the age of the student, his/her grade point
average, his/her mental ability, and the amount of time
devoted to teaching BASIC programming.

Educators are just now realizing the potential of the
computer as an instructional tool. Computer education at
all levels is in a state of flux because goals and objec-
tives and methods of utilizing the electronic device in the
classroom are not well-defined. Much of the problem solv-
ing instruction with the computer is found at the college
level where this versatile, new machine is even being used
for teaching number theory and classical mechanics, two of
the oldest disciplines currently taught. There are few
reports of similar use of the computer as a problem solv-

ing tool in secondary schools. A probable reason for the

48

lack of computer use at the high school level is the dearth
of research on effective methods of teaching programming to
secondary students. This study adds some empirical data
intended to address this problem.

Suggestions for future research on teaching introductory
computer programming using Logo followed by BASIC or employ-
ing BASIC alone include experiments that test the affective
results of the two teaching methods, the effects of varying
the amount of time devoted to Logo programming and altering
the time devoted to the entire unit, and the effécts of
varying the population from which the sample 1s selected.
Groups of adults, of junior high or elementary students, or
of high school students from other levels could compose the
population from which samples are chosen for additional
research.

This experimental design could be used to test for
achievement in mathematics when students are taught program-
ming by the two approaches of concern in this study. More
formal investigation of the effects of gender as well as
the number of BASIC programs completed and the grade level
of the student could be conducted with a well-defined pop-
ulation and all samples of large size to allow for a more
powerful statistical decision. Much more research needs

to be performed in this important field of study.

Lo

Summary

The research problem was to investigate the effect of
the instructional method employed upon the BASIC computer
programming achievement of secondary mathematics students.
One group was instructed in BASIC exclusively, and the other
group was taught BASIC after they had received instruction
in Logo. The experimental-control group, pretest-posttest
design was used to determine if there was a significant
difference between the two methods used to teach introduc-
tory computer programming. Using analysis of covariance,
the following hypotheses were tested:

1. There is no significant difference in achievement in
BASIC computer programming between secondary mathematics
students who are taught programming using BASIC after they
learned Logo and those who are taught programming using
only BASIC.

2. There is no significant difference in computer pro-
gramming achievement between secondary geometry students
and secondary algebra II students.

3. There is no significant interaction between type of
mathematics course (algebra vs. geometry) and type of treat-
ment (BASIC with Logo vs. BASIC alone).

In addition the researcher investigated the relationship
between the sex of the student and his/her achievement in
BASIC programming.

The subjects of this study were students enrolled in

50

four geometry classes and three algebra II classes in three
St. Mary Parish public schools during the 1983 spring semes-
ter. The students in the experimental group were taught
computer programming with Logo initially followed by
instruction in BASIC programming. The control group learned
BASIC programming only. The treatment period was five
weeks.,

The criterion for achievement in BASIC programming was
the score attained on a BASIC programming examination pre-
pared by the experimenter. This instrument served as both
pretest and posttest. Validity of the evaluation instru-
ment was established by a panel of experts.

Analysis of covariance was used to test for significant
differences between mean scores of the experimental and the
control groups on the posttest with the pretest score used
as a covariate. This statistical procedure was also used
on subsamples composed of geometry students and of algebra
students and on ones composed of males and of females. The
analysis of subsample data was used to determine if the two
methods of teaching BASIC programming would result in sig-
nificantly different degrees of success depending upon the
level of the student's scheduled mathematics class or upon
the gender of the student.

Statistical analysis revealed that the difference
between adjusted mean scores on the posttest was signifi-

cant at the 0.05 level with the group that was taught

51

BASIC exclusively attaining a higher score than the group
that was taught Logo and BASIC. There was no significant
difference between adjusted posttest mean scores for the
sample consisting of students classified according to
whether they were enrolled in an algebra II class or in a
geometry class. Likewise, no significant difference was
found in the adjusted mean scores for the males and the

females in the sample.

BIBLIOGRAPHY

Abbott, R. J. The place of computer science in general
education. In Proceedings of the 1979 Western
Educational Computing Conference. North Hollywood:
California Educational Computing Consortium, 1979.

Abelggn, H. A beginner's guide to Logo. BYTE, 1982, 7(8),
+e

Abernathy, K., Piegari, G., and Thorsen, A. L. Computer
applications in a finite mathematics course. In D.
Harris and B. Collison (eds.), Proceedings of
NECC/2 - National Educational Computing Conference
1980. TIowa City: The University of Iowa, 1980.

Albrecht, B., Finkel, L., and Brown, J. R. BASIC for Home
Computers: A Self-Teaching Guide. New York: John
Wiley, 1978.

Andersen, B. S. Pascal vs. BASIC. In P. Barrette (ed),
Microcomputers in K-12 Education. Proceedings of the
First Annual K-12 Microcomputers in Education
Conference, Southern Illinois University, March 1981.
Rockville, Maryland: Computer Science Press, 1982.

Anderson, S. S. Computer-assisted creativity in number
gheoﬁy. Mathematics and Computer Education, 1982, 16,
1'—9 []

Atchison, W. F. The computer as the object of instruction.
In D. C. Johnson and J. D. Tinsley {(eds.), Informatics
and Mathematics in Secondary Schools. Proceedlngs of
the TIFIP TC-3 Working Conference on Informatics and.
Mathematics in Secondary Schools, Impacts and Relation-
ships, September 1977. Amsterdam: North-Holland
Publishing, 1978.

Banagasser, V. Computer literacy for seventh grade. The
Computing Teacher, 1983, 10(7), 66-68.

Blechman, F. Programs for Beginners on the TRS-80.
Rochelle Park, New Jersey: Hayden Book, 1981.

Bratko, I., Rajkovic, V., and Roblek, B. What should .
secondary school students know about computers: Analysis
of an experiment. In O. Lecarme and R. Lewis (eds.),
Computers in Education. Proceedings of the IFIP Second
World Conference on Computer Education, 1975.

Amsterdam: North-Holland Publishing, 1975.

52

53

Carpenter, T. P., Corbitt, M. K., Kepner, H. S.,
Lindquist, M. M., and Reys, R. E. The current status
of computer literacy: NAEP results for secondary
students. Mathematics Teacher, 1980, 73, 669-673.

Carpenter, T. P., Corbitt, M. K., Kepner, H. S.,
Lindquist, M. M., and Reys, R. E. Results from the
Second Mathematics Assessment of the Natlonal Assessment
of Educational Progress. Reston, Virginia: National
Counclil of Teachers of Mathematics, 1981.

Carter, R. The complete gulide to Logo. Classroom Computer
News, 1983, 3{(5), 35-39.

Davis, A. D. Classical mechanics with computer assistance.
In D. Harris and B. Collison (eds.), Proceedings of

NECC/2 - National Educational Computing Conference
1 «. Jlowa City: The University of Iowa, 1 .
Dolan, D. T. Montana office of public instruction surveys:

Computer education activity in schools. The Computing
Teacher, 1982, 9{9), 58.

du Boulay, B., and Howe, J. Re-learning mathematics
through ILogo: Helping student teachers who don't
understand mathematics. In J. Howe and P. Ross {(eds.),
Microcomputers in Secondary Education: Issues and
Technigues. New York: Nichols Publishing, 1901.

EL News. EL survey shows: Computers used more widely in
instruction than administration. ZElectronic Learning,
1982, 1{8), 12.

Faulk, E. How to Write a TRS-80 Program. Chatsworth,
California: Datamost, 1982.

Fisher, G. Developing a district-wide computer use plan.
The Computing Teacher, 1983, 10{(5), 52-59.

Fox, A., and Fox, D. Armchair BASIC: An Absolute
Beginner's Guide to Programming in BASIC. Berkeley,
Zalifornia: Osborne/McGraw-Hill, 1983.

Garrett, H. E. Statistics in Psychology and Education.
New York: David McKay, 19067.

Gilberts, R. D. The Computer: Extension of the Human Mind.
Eugene, Oregonh: University oI Oregon, 198<. {(ERIC
Document Reproduction Service No. ED 219 859)

Golden, N. Computer Programming in the BASIC Language.
{2nd ed.). New York: Harcourt Brace Jovanovich, 1981.

54

Gottfried, B. S. Schaum's OQutline of Theory and Problems
of Programming with BASIC. {2nd ed.). ©New York:
McGraw-Hill, 1982.

Gress, E. K. The future of computer education: Invincible
innovation or transitory transformation? The Computing
Teacher, 1982, 9(1), 39-42.

Haney, M. R. Review of Karel the Robot - A Gentle
Introduction to the Art of Programming, by R. Pattis.
The Computing Teacher, 1982, 9(3), 42.

Hansen, T. P., Klassen, D. L., Anderson, R. E., and
Johnson, D. C. What teachers think every high school
graduate should know about computers. School Science
and Mathematics, 1981, 8, 467-L472.

Hart, M. Using computers to understand mathematics, four
years on. Mathematics Teaching, 1982, 98, 52-5&.

Hopper, J. A. A byte of BASIC. In D. Harris and B.
Collison {eds.), Proceedings of NECC/2 - National
Educational Computing Conference 1980. TIowa City:
The University of Towa, 1980.

Horn, C. E., and Poirot, J. L. Computer Literacy: Problem-
Solving with Computers. Austin, Texas: Sterling Swift,
1981.

Howe, J., and Ross, P. Moving LOGO into a mathematics
classroom. In J. Howe and P. Ross {eds.),
Microcomputers in Secondary Education: Issues and
Techniques. New York: Nichols Publishing, 1981.

Hughes, B. Thinking Through Problems. Palo Alto,
California: Creative Publications, 1976.

Hunt, R. Pocket Guide to BASIC. Reading, Massachusetts:
Addison-Wesley, 1982.

Hunter, B. Computer literacy: 1949-1979. 1In R. J. Seidel,
R. E. Anderson, and B. Hunter (eds.), Computer Literacy:
Issues and Directions for 1985. New York: Academilc
Press, 1982.

Hunter, B., Kastner, C. S., Rubin, M. L., and Seidel, R. J.
Learning Alternatives in U. S. Education: Where Student
and GComputer Meet. Englewood Cliffs, New Jersey:
Educational Technology Publications, 1975.

55

Jacobs, Z. P., French, F. G., Moulds, W. J., Schuchman,
J. G. Computer Programming in the BASIC Language.
Boston: Allyn and Bacon, 1983.

Jacquet, E. M. Personal communication, March 18, 1983.

Joseph, H., Lesson Plan for a Computer Literacy Unit (3
Weeks). 1979. (ERIC Document Reproduction Service
No. ED 216 898)

Knuth, D. E. Computer science and its relation %o
mathematics. The Americar Mathematical Monthly, 1974,
81, 323-343.

Konvalina, J., Stephens, L., and Wileman, S. Identifying
factors influencing computer sclence aptitude and
achievement. AEDS Journal, 1983, 16, 106-112.

Krulik, S. (ed.). Problem Solving in School Mathematics.
Yearbook of the National Council of Teachers of
Mathematics. Reston, Virginia: National Council of
Teachers of Mathematics, 1980.

La France, J. E. Shall we teach structured programming to
children? In D. Harris and B. Coilison {eds),
Proceedings of NECC/2 - National Educational Computing
Conference 1980. Iowa City: The University of Iowa,
1980.

Lemos, R. S. On the measurement of programming language
learning. In Proceedings of the 1979 Western
Educational Computing Conference. North Hollywood:
California Educational Computing Consortium, 1979.

Lemos, R. S. A comparison of non-business and business
student test scores in BASIC. SIGCSE Bulletin, 1981,

13, 86-90.

Lias, E. Micro-computers in education. Loulsiana
Association of School Executives Conference, New
Orleans, Louisiana, November 20, 1982.

Lough, T. Logo: Discovery learning with the classroom's
newest pet. Electronic Learning, 1983, 2{(6), 49-53.

Luehrmann, A. Pre- and post-college computer education.
In R. P. Taylor (ed.?,

The Computer 1n the School:
Tutor, Tool, Tutee. New Yorks Teacﬁers CoIlege Press,

1980a.

56

Luehrmann, A. Prepared statement on research, development,
and planning for computers and the learning society.
In R. P. Taylor {(ed.), The Computer in the School:
Tugor, Tool, Tutee. New York: Teachers College Press,
1980b.

Luehrmann; A. Should the computer teach the student, or
vice-versa? In R. P. Taylor {ed.), The Computer in
the School: Tutor, Tool, Tutee. New York: Teachers
College Press, 1980c.

Luehrmann, A. Technology and science education. In R. P.
Taylor (ed.), The Computer in the School: Tutor, Tool,
Tutee. New York: Teachers College Press, 1980d.

Luehrmann, A. Computer literacy - What should it be?
Mathematics Teacher, 1981, 74, 682-686.

Masat, F. E. An immersion course in BASIC. Journal of
Educational Technology Systems, 1981-82, 10, 321-329.

Mavaddat, F. Another experiment with teaching of program-
ming languages. SIGCSE Bulletin, 1981, 13, 40-56.

Mazlack, T.. J. Compatability of students from different
disciplines and semesters. In 0. Lecarme and R. Lewis
{eds.), Computers and Education. Proceedings of the
IFIP Second World Conference on Computer Education.
Amsterdam: North-Holland Publishing, 1975.

Mazlack, L. J. Identifying potential to acquire program-
ming skill. Communications of the ACM, 1980, 23,
14-17.

Morning Advocate. Baton Rouge, Louisiana. April 27, 1983,
p- 1’ COlS- 2-6.

Moursund, D. ACM elementary and secondary schools sub-
committee progress report. In D. Harris and B.
Collison ({eds.), Proceedings of NECC/2 - National
Educational Computing Conference 1980. Towa City:
The University of Iowa, 1980.

Muller, L., and Muller, J. Watch out for the turtles!
Educational Computer Magazine, 1982, 2{3), 14+.

National Council of Teachers of Mathematics. Position
" statement on basic skills. Mathematics Teacher, 1978,

71, 147-152.

57

National Council of Teachers of Mathematics. An Agenda for
Actions Recommendations for School Mathematics for the
1980s. Reston, Virginla: National Councll of Teachers
of Mathematics, 1980.

Nelson, D. E., Burras, D. V., Gillis, E. J., and King R. L.
BASIC: A Simplified Structured Approach. Reston,
Virginlia: Reston Publishing, 1981.

Norris, D. 0. Let's put computers into the mathematics
curriculum. Mathematics Teacher, 1981, 74, 24-26.

Newell, A., and $imon, H., A. Human Problem Solving.
Englewood Cliffs, New Jersey: Prentice-Hall, 1972.

Nickels, H. Teaching teachers the three R's (REM, READ,
and RETURN): A BASIC course in instructional computing.
In Proceedings of the 1980 Western Educational
Computing Conference. North Hollywood: California
Educational Computing Consortium, 1980.

Papert, S. Mindstorms: Children, Computers, and Powerful
Ideas. New York: Basic Books, 1980.

Papert, S., Watt, D., di Sessa, A., and Weir, S. The
Brookline Project Final Report Part II: Project Summary
and Data Analyslis. Cambridge, Massachusetts:
Massachusetts Institute of Technology, Artificial
Intelligence Laboratory, 1979. (ERIC Document
Reproduction Service No. ED 196 423)

Pattis, R. E. Karel the Robot: A Gentle Introduction to
the Art of Programming. New YorkK: John Wiley, 1901.

Patton, R., Ortho, R., and Hopfensperger, P. Computer
Literacy for All High School Students. 1981. RIC
Document Reproduction sService No. BD 216 679)

Pereira-Mendoza, L. Heuristic Strategies utilized by high
school students. The Alberta Journal of Educational

Piele, D. T. Computer assisted problem solving in
mathematics. In The Computer: Extension of the Human

Mind. Eugene, Oregon: University of Oregon, 1982,
TERIC Document Reproduction Service No. ED 219 859)

Polya, G. How to Solve It. {2nd ed.). Princeton, New
Jersey: Princeton University Press, 1957.

Polya, G. Mathematical Discovery (Vol. 1). New York: John
Wiley, 1962 o

58

Polya, G. Mathematical Discovery (Vol. 2). New York:
John Wiley, 1965.

Popham, W. J. Educational Statistics: Use and
Interpretation. New York: Harper and Row, 1967.

Reetz, G. Why Johnny can't compute. Electronic Learning,
1983, 2(7), 24+.

Robison! F. G., Tuckle, J., and Brison, D. W. Inquir
Trainings: Fusing Theory and Practice. Profiles in
Practical Education, The Ontario Institute for Studies
in Education. Toronto: The Ontario Institute for
Studies in Education, 1972.

Rubinstein, M. F. Explicit heuristic training as a
variable in problem-solving performance. Journal for
Research in Mathematics Education, 1975, 10, 173-187.

Sage, E. R. Problem-Solving with the Computer. Newburyport,
Massachusetts: Entelek, 1969.

Schneider, G. M. The introductory programming course in
computer science--ten principles. SIGCSE Bulletin,
1978, 10, 107-114.

Shane, H. G. The silicon age and education. Phi Delta

Kappan, 1982, 63, 303-308.

Shelly, G. B., and Cashman, T. J. Introduction to BASIC
nggramming. Brea, Californias: Anaheim Publishiling,
1982,

Smith, R. E. Discovering BASIC: A Problem Solving Approach.
Rochelle Park, New Jersey: Hayden Book, 1970.

Sobol, T., and Taylor, R. The Scarsdale project: Integrating
computing into the K-12 curriculum. In D. Harris and B.
Collison (eds.), Proceedings of NECC/2 - National
Educational Computing Conference 1980. Iowa City: The
University of Iowa.

Solomon, C. J. Leading a child to a computer culture. 1In
The Papers of the ACM SIGCSE-SIGCUE Technical Symposium
on Computer Science and Education 1975. New York:
Assoclation for Computing Machinery, 1975.

Soloway, E., Lochhead, J., and Clement, J. _Does computer
programming enhance problem solving sbllity? Some
positive evidence on algebra word problems. In R. J.
Seidel, R. E. Anderson, and B. Hunter (eds.), Computer
Literacy: Issues and Directions for 1985. New York:
Academlc Press, 1982.

59

Spencer, D. D. Problems for Computer Solution. Ormond
Beach, Florida: Camelot Publishing, 1972.

Taylor, H., and Poirot, J. L. State certification of
computer science teachers progressing slowly.
Electronic Learning, 1983, 2{7), 16-18.

Tracton, K. The BASIC Cookbook. Blue Ridge Summit,
Pennsylvanias Tab Books, 1978.

Waite, M., and Pardee, M. BASIC Programming Primer. {2nd
ed.). Indianapolis: Howard W. Sams, 1982.

Watt, D. The brouhahe over computers in the classroom.
Popular Computing, 1982a, 1(7), 36-45+.

Watt, D. Logo in the schools. BYTE, 1982b, 7{(8), 116-120.

Watt, D. Should children be computer programmers? Popular
Computing, 1982c, 1(11), 130-133.

Wicklegren, W. A. How to Solve Problems. San Francisco:
W. H. Freeman, 1974.

Winogard, T. Beyond programming languages. Communications
of the ACM, 1979, 22, 391-401.

Wold, A. L. What is a programming language? Classroom
Computer News, 1983, 3(5), 46-49.

APPENDICES

APPENDIX A
Instrument used as Pretest/Posttest on

BASIC Computer Programming

61

62

Part 1 MULTIPLE CHOICE Darken the space on the answer sheet
that contains the letter of the correct

response.

1. The BASIC statement +hat is never executed by the computer
but that is used by the programmer to make the program
easier to read is

(A) PRINT (C) READ (E) none of these
(B) COMMENT (D) REM
2. In BASIC which of the following symbols is used for multi-
plication?
(A X (C) %x (E) all of these
(B) ¥ (D) =
3. Every line of a BASIC program must contain
(A) an equal sign (C) a statement number (E) none of these
(BY the word LET (D) an equation
4. If you wanted to give N a value of 100, which type of statement
would you use?
(A) SET (C) PRINT (E) none of these
(B) LET (D) LIST
5. In order to execute a program that is stored in the memory of

the computer, which command must be typed and entered?

(A)Y LOAD (C) RUN (E) none of these
(B) SAVE (D) EXECUTE

6. Locating and correcting errors in a computer program is
called
(AY structuring (C) documenting (E) debugging
(B)Y reverifying (D) tidying

7. The command used to retrieve a program stored on a diskette
is
(A) READ (C) LOAD (E) none of these
(B) PRINT (D) SAVE

8. To instruct the computer to accept alphabetic information

such as a name from the keyboard, which of the following
statements would be used?

(A) 30 INPUT A (C) 30 INPUT AS (E) 30 READ A
(B)Y 30 INPUT "A" (D) 30 READ AS$

MULTIPLE CHOICE

9. I ¥ the

statement LET N§$

63

——Dee

"3 + 4" is followed by the

statement PRINT N$ what would be the output?

CA)
(B)

3+ 4
3

10.

READ/DATA
GET/DATA

(A)
(B)

11. What is the o

CA)
(B)

56 7
5
12. Every program

(A) END
(B) BEGIN

13. Consider the

What will

whatever
from the
nothing

(A)
(B)

14. in order +o

columns on each of two
one could use which of the following sequence of

each other,

Which statement group

be the value of N$ when the program

(E) none of these

(c)
(D)

"3 + 4"
"7"

is associated with the input of data?

(C) INPUT/DATA (E) all of these
(D) A and C only
utput of the following program?
10 LET A =5
20 LET B = 6
30 LET C = 7
40 PRINT B ; A
50 END
(C) 5 6 (E) 6 5
6 (D) 6 5
must contain a statement called
(C) LET (E) WRITE
(D) FOR

following programming segment:

PRINT "WHAT IS YOUR NAME";

INPUT N$

100
110

is executed?

is entered (C) "WHAT IS YOUR NAME"™ (E) N
keyboard

(D) zero
print the values of six variables in three

lines of output placed directly under

statements?

(A) 10 PRINT A,B,C (C) 10 PRINT A,B,C; (E) all of these
20 PRINT X,Y,Z 20 PRINT X,Y,Z

(B)Y 10 PRINT A;B;C; (D) 10 PRINT A,B;C
20 PRINT X;Y;Z2 20 PRINT X;Y,Z

64

MULTIPLE CHOICE ==3=-
15. In order to print the word "HERE" in the twentieth column
from the left side of the screen, one would write
(A 50 PRINT(20);"HERE" (C)Y 50 PRINT TAB(20);"HERE"
(B) 50 PRINT"HERE";(20) (D) 50 PRINT"HERE";TAB(20)
(E) 20 PRINT "HERE"

16. Which of these pre-programmed functions is available in

BASIC?
(A) ABS (C) INT (E) atl of these
(B) SOQR (D) RND

17. What is the output of +the following program?

10 READ A
15 DATA -1,3,6,5

20 IF A > 5 THEN GOTO 50
30 PRINT "ABC,";

40 GOTO 10

50 PRINT "XYZ,";

60 END
(A) ABC,XYZ,XYZ,XYZ (¢) Xyz,Xyz,ABC, (E) ABC,ABC,XYZ,ABC
(B) XyZ,ABC,XYZ,ABC (D) ABC,ABC,XYZ,

18. Consider the following program:

10 FOR I =1 70 5
20 PRINT "GO TEAM"
30 NEXT |
40 PRINT "RAH! RAH! RAH!"
50 END

How many lines of output will be printed?

(A) 2 (C) 6 (E) 13

(B) 5 (D) 8

19. In order to display the program that is currently in the

computer's memory, the command to be used is

(A) DtSPLAY (C) SAVE (E) LIST
(B) SHOW (D) PRINT

65

MULTIPLE CHOICE =-=-4--~

20. in the following problem which operation will be done first
in BASIC?

13+2—6*5/10+3

(A) 13 + 2 (C) 6

* 5 (E) 10 + 3
(B) 2 - 6 (DY 5 / 1

0

66

Part 2 SHORT ANSWERS Indicate your response on the answer sheet

in the proper section of part 2.

Write a BASIC statement to perform the following calculation:

x +y + z

A =
6

Indicate if each of the following variable names are valid
or not valid in BAS!IC by choosing the appropriate term on
the answer sheet.

(A) A
(B) AB
(C) AS
(D) 2B
(E) B2
(F) $BS
(G) 12A

Indicate if each of the following BASIC statements or
program segments is correct or if it contains an error by
choosing the appropriate response on the answer sheet.

(AY 10 PRINTT A
(B) 10 READ, N
(C) 10 LET X + Y = A
(D) 10 INPUT X3
(E) 10 IF X<>Y THEN PRINT "GOOD"
(F) 10 LET A = LW
(G 10 FOR J = 5 TO 23 STEP 4
(H) 10 DIM AC100)
(1) 10 IF X<Y OR Y>2 THEN GOTO 50
(J) 10 REM PROGRAM TO ADD NUMBERS
20 PRINT M"ENTER TWO NUMBERS TO ADD TOGETHER™"
30 INPUT N1, N2
40 S = N1 - N2
50 PRINT S
60 END
(KY 5 LET A =5
10 LET Y = A - A
20 LET Z2 = 2 + A
30 LET X = 2/Y
40 END

Part 3

Indicate

1. 10
20
30
40
50
60
70
80

out

3. 10
20
30
40
50
60
70
80
90

100
110
120
130

outpu

67

PROGRAM ANALYSIS Indicate your response on the answer
sheet in the section labeled "Part 3."

t+he output of each of the following programs.
LET C =1 2. 10 FOR I =1 70 3
LET S =0 20 READ N
IF C > 5 THEN 80 30 GOsSuB 100
LET S = S + C 40 PRINT A, B
PRINT S 50 NEXT |
LeT C = C + 1 60 GOTO 140
GOTO 30 100 LET A = N * |
END 110 LET B = NT2
120 RETURN
put: 130 DATA 5, 2, 6
140 END
output:
DIM AC(10)
FOR J =1 70 10
READ ACJ)
NEXT J
LET T = 0
FOR J = 2 TO 5
T =T+ A(J)
NEXT J
PRINT T
DATA 6,~3,2,5,0
DATA -2,1,8,-1,4
DATA 6,3,9,-4
END
t:

68

Part 4 PROGRAM WRITING Write your program on the second shee+
of the answer section. Be sure to place
your student number and ciass code on
that page as well as on the first page
of the answer sheet.

Write a program that will accept a student's name and three test
scores for each of five students. Determine each student's
average and print out each student's name, test scores, and
average. A student passes if his average is 70% or greater;

otherwise he fails. On a separate line indicate how many of the
students passed and how many failed. Be sure to label all out-
put.

Each test has a possible score of 100 points. Use +the follow-
ing entries as data:

NAME TEST 1 TEST 2 TEST 3
Abbot Joe 89 100 97
Adams Jane 93 95 92
Brown Kate 63 65 71
Caldwell Jeff 83 75 79

Counts Kevin 52 59 80

69

ANSWER SHEET

Part 1 - Multiple Choice
1. (A) (B) (C) (D) (E) 11. (A) (B) c (D) {E)
2. (A) (B) (C) (D) (E) 12. (A) (B) c) (D) (E)
3. (A) (B) c) (D) (E) 13. (A) (B) (Cc) (D) (E)
4. (A) (B) (c) (D) (E) 14. (A) (B)) (D) (E)
5. (A) (B)) (D) (E) 15. (A) (8) (C) (D) (E)
6. (A) (B) (Cc) (D) (E) 16. (A) (B) () (D) (E)
7. (A) (B) (C) (D) (E) 17. (A) (B) c) (D) (E)
8. A) (B) c) (D) (E) 18. (A) (B) <) (D) (E)
9. (A) (B) (c) (D) (E) 19. (A) (B) (Cc) (D) (E)
10. (A) (B) (c) (D) (E) 20. (A) (B) (C) (D) (E)
Part 2 - Short Answers
1. 3. correct error
(A)))
2. valid not valid (B) () (G
(A) [) c)))
(B))) (D) ¢))
() ¢)) (E)) ()
(D)) () (F) ())
(E) (G) (G)) ()
(F))) (H)) ()
(G)) «¢))))
) ())
(K)) ¢
Part 3 - Program Analysis
1. output:
2. output:

3. output:

STUDENT NUMBER

CLASS CODE

70

ANSWER SHEET

Part 4 PROGRAM WRITING

STUDENT NUMBER

CLASS CODE

— o — . m— e S e e e e e e e e mme e et vmme s ame cmmr e aome min eeat deun aeew e mma mm— w—

APPENDIX B
Objectives for BASIC Programming Unit

71

72

OBJECTIVES

After a unit in introductory BASIC programming the student shall
recognize, understand, and be able to use correctly each of the
following programming concepts:

1)

2)

3)

4)

5)

6)

7)

8)

9)

10)

1)
12)

13)

14)

elements of programming style including documentation,
indention of code, and use of the REM statement

requirements for proper programming coding such as a
statement number for each line of code and the presence of
an END statement

input/output statements using the keywords READ, DATA,
INPUT, and PRINT including methods of formatting output
employing the semicolon, comma, and TAB

assignment statements using LET

available arithmetic operations and the hierarchy of
implementation of these operations

selection statements such as IF THEN and GOTO as well as the
role of the relational operators and the Boolean operators

subroutines and their functions and the GOSUB and RETURN
statements

repetition statements such as FOR NEXT or the establishment
of' a loop using a counter

library functions including ABS, SQR, INT, RND, and
available trigonometric functions

establishing and manipulating one-dimensional arrays using
the DIM statement and subscripted variables

the meaning of the system commands RUN, LIST, LOAD, and SAVE

distinction between numeric and string variables and
constants

developing a method to represent an algorithm prior to
coding

debugging a program

APPENDIX C
Letter Granting Permission for Student

Participation in the Study

73

74

{Student's Name)

Dear Parent,

A graduate student at Louisiana State University, I am
doing a study on methods of teaching computer programming.
Since computers will be such an important part of the lives
of all of us, it is desirable for high school students to
have experience using this electronic machine. One way to
gain this experience is by learning to program.

Your child's mathematics class has been selected to
participate in the research. The assistant superintendent
of curriculum and instruction, school principal, and
mathematics teacher have agreed to allow me to conduct the
research in the school. I need your permission for your
child to participate in the study.

Each participant will receive ten hours of instruction in
programming a computer at school in his mathematics class.
A teacher in St. Mary Parish schools for twenty-one years, I
will teach the unit on computer programming. A test will be
given before and after the instruction in order to determine
how much programming was learned in that period of time. No
names or individual scores will be reported nor will any
school or class be identified. There will be no homework
assigned to any participant, and the student will not
receive a grade or credit in computer programming for taking
part in this study.

Thank you for your consideration. Please sign this
permission slip and have your child return it as soon as
possible.

Sincerely,
gdaduvézéézkuau;

Diane B. Calamari

Parent’'s Name)

APPENDIX D
Summary of BASIC Commands

75

1)

2)
3)

4)

5)

6)

7)

8)

9)

10)

76

Summary of BASIC Commands

Every line of a BASIC program must have a line number.
This number determines the order in which the
statements of the program are executed.

Every program must end with a statement called END.

OUTPUT: command is PRINT. Use quotation marks around
a word or phrase if you wish it to be output exactly as
you write it., If you PRINT a mathematical expression
or a variable without any quotation marks, the value
of the expression or the variable will be printed on
the screen.

MATHEMATICAL OPERATIONS: computer can perform
addition, subtraction, multiplication, and division;
can also raise a number to a power (use upward arrow
key). Multiplication and division are performed from
left to right followed by all addition and subtraction
from left to right. The order of operations can be
changed by using parentheses.

When commas are used to separate data, the output is
spaced far apart; to have output spaced close together,
use semicolons to separate data or variables.

VARIABLES: numeric variables refer to numbers (integers
or decimal numbers); string variables refer to words or
special symbols. Variable names must begin with a
letter of the alphabet; then it can have any number or
another letter; string variables must end with a §.

LET: wused to assign values to variables and to assign
a value to an expression or formula involving
calculations.

INPUT: wused to enter data from the keyboard. Need to
precede an INPUT statement with a PRINT statement to
tell the user what is to be input. If more than one
variable value is input in the same statement, each
value should be separated by commas.

TAB: used to space output on the screen. For example,
PRINT TAB (15); "Name" places the "N" of Name in the
fifteenth column of the screen.

REM: stands for remark and is used to tell the reader
what the program is about. REM is not executable, but
it appears in the listing of the program.

11)

12)

13)

14)

7

RUN, LIST, NEW: these commands are used to control
what the computer does at a particular time. RUN means
to execute the program that is in the computer's
memory. LIST means to display the program as it was
typed in at the keyboard. NEW is used to clear the
memory of the computer before entering another program.

LOOPING: occurs whenever you want to process more than
one set of data with the same program. Most loops are
established by using FOR...NEXT or IF...THEN.
FOR...NEXT: This loop uses a FOR statement and a NEXT
statement as the borders of the loop. If
one programs the following:
10 FOR I =1 to 45
20 some
30 program
40 statements
50 NEXT 1
the loop containing "some program
statements" will be run 45 times. If you
want the loop executed a special number of
times that is not always increased by 1
then use:
10 FOR 1 = 2 TO 36 STEP 2 and cause I to
have values of 2, 4, 6,...,36.
IF...THEN: when the "if" part is true, the "then” is
executed; otherwise, the statement following the
IF...THEN is executed. This statement can be used to
compare using =,4&£,% ,&=,>=, or<£L>». The connectives
AND and OR can be used in IF...THEN statements.
GOTO: this statement is used to unconditionally direct
execution of the program to another statement
identified by its number.

The computer has certain built-in functions that can be
useful to the programmer. These include ABS, INT, RND,
SQR. ABS(X) returns the absolute value of X; INT(Y)
drops any decimal part of Y so INT(3.59) = 3, INT(2,2)
= 2 or INT(5) = 5 - this is called truncation. RND(Z)
produces a random number that is positive and has a
value not greater thanm Z; SQR(A) produces the square
root of A if A is not negative (error is A is
negative).

SUBROUTINES: wused whenever a portion of the program
must be repeated. The subroutine is called in the main
program with a GOSUB statement number command and the
subroutine is ended with a RETURN statement.

78

15) ARRAYS are used to keep several bits of data that refer
to the same data set together. Arrays must be
dimensioned with a DIM statement before any reference
can be made to the array. Elements of an array are
denoted by using subscripted variables 1ike A(l), A(2),
etc.

16) READ/DATA 1is used to input data within the program (as
opposed to INPUT which is used to receive data from the
keyboard). A READ statement must have a DATA statement to
which it refers. The computer will READ the data items in
the order which they are typed in the program. This is used
when the input is not too variable.

note: This is a brief summary of the BASIC commands that we
have studied.

APPENDIX E

List of Heuristic Strategies

79

80

List of Heuristic Strategies
source: Polya, 1957: xvi-xvii
UNDERSTANDING THE PROBLEM

First. You have to understand the problem.
What is the unknown? What are the data? What is the con-
ition?
Is is possible to satisfy the condition? Is the
.condition sufficient to determine the unknown? Or is it
insufficient? Or redundant? Or contradictory? Draw a
figure. Introduce suitable notation. Separate the
various parts of the condition. Can you write them down?

DEVISING A PLAN

Second. Find the connection between the data and the
unknown. You may be obliged to consider auxillary
problems if an immediate connection cannot be found. VYou
should obtain eventually a plan of the solution. Have
you seen it before? Or have you seen the same problem in
a slightly different form?

Do you know a related problem? Do you know a theorem
that could be usetul?

Look at the unknown! And try to think of a familiar
problem having the same or a similar unknown.

Here is a problem related to yours and solved before.
Could you use 1t? Could you use 1ts result? Could you
use 1ts method? Should you introduce some auxillary
element in order to make its use possible.

Could you restate the problem? Could you restate it
still differently? Go back to the definitions.

If you cannot solve the proposed problem, try to solve
first some related problem. Could you imagine a more
accessible related problem? A more general problem? A
more special problem? An analogous problem? Could you
solve a part of the problem? Keep only a part of the
condition, drop the other part; how far is the unknown
then determined, how can it vary? Could you derive other
data appropriate to determine the unknown? Could you
change the unknown or the data, or both if necessary, so
that the new unknown and the new data are nearer to each
other?

Did you use all the data? Did you use the whole
condition? Have you taken into account all essential
notions involved in the problem?

81

CARRYING OUT THE PLAN

Third. Carry out your plan.
Carrying out your plan of the solution, check each step.
Can you see clearly that the step is correct? Can you

prove that it is correct?

LOOKING BACK

Fourth. Examine the solution obtained. Can you
check the result? Can you check the argument?
Can you derive the result differently? Can you see it at
a glance?
Can you use the result, or the method, for some other
problem?

APPENDIX F
Logo Commands and Sample

Logo Programs

82

83

Summary of Logo Commands

FORWARD N (or FD N): moves the cursor N units in the
direction in which it is pointing
leaving a trail on the screen

RIGHT A (or RT A): rotates the cursor A degrees clockwise
with no lateral movement

LEFT A (or LT A): rotates the cursor A degrees counter-
clockwise with no lateral movement

REPEAT N(statements): executes the pro%ram statements
within the parentheses N times --
loop structure

HIDE TURTLE (or HT): causes the cursor to disappear from
the screen

SHOW TURTLE {or ST): places the cursor at its current
position on the screen

The format of a Logo program is as follows:

TO program name
program statement(s)
END

TO SQUARE
FORWARD 20
RIGHT 90
FORWARD 20
RIGHT. 90
FORWARD 20
RIGHT 90
FORWARD 20
RIGHT 90

END

or

TO SQUARE
FD 20
RT 90
FD 20
RT 90
FD 20
RT 90
FD 20
RT 90

or

TO SQUARE
REPEAT 4{(FD 20 RT 90)
END

Figure 1

Output of Logo
Program Named
* SQUARE

8L

TO DESIGN
REPEAT 24 [SQUARE RT 15)
HT

END

or

TO DESIGN NUM:36, TURN:15
REPEAT NUM(SQUARE RT TURN)
HT

END

Figure 2 Output of Logo Program Named DESIGN

85

TO BIGSQ

REPEAT 4 ({FD 30 RT 90)
END
TQ DESIGNZ
REPEAT 36(BIGSQ RT 10)
HT
END
or

TO DESIGN2 . NUM:36, TURN:10
REPEAT NUM(BIGSQ RT .TURN)
HT .

. Figure 3 Output of Logo Program Named DESIGN2

86

APPENDIX G
Item Analysis of the

Evaluation Instrument

87

Part of the Item Difficulty Index of

Test Number Index Discrimination
1 1 0.414 0.486
2 0.900 0.143
3 0.929 0.143
0.914 0.171
5 0.457 0.229
6 0.200 0.400
7 0.486 0.514
8 0.457 0.571
9 0.300 0.314
10 0.114 0.171
11 0.286 0.171
12 0.929 0.143
1 0.614 0.257
1 0.488 0.514
15 0-271 0.571
16 O.414 0.429
17 0.343 0.400
18 0.386 0.600
19 0.843 0.200
20 0.643 0.600
II 1 0.100 0.200
2a 0.900 0.200
2b 0.657 0.343
2c 0.886 0.171
24 0.529 0.429
2e 0.486 0.229
2F 0.800 0.229
2e 0.557 0.486
3a 0.971 0.027
3b 0.600 0.543
3¢ 0.300 0.371
34 0.829 0.257
3e 0.529 0.257
3f 0.429 0.114
3g 0.314 0.114
3h 8.657 8'323

i 729 .

3k 0.429 0.514
IIT 1 0.029 0.057
2 0.100 0.200
3 0.001 0.006

IV program 0,029 0.057

VITA

Mary Diane Bodin Calamari was born in Franklin,
Louisiana. She attended public elementary and secondary
schools there and is a graduate of Franklin High School.

In 1957 she entered the University of Southwestern
Louisiana as a chemistry major. She has received a
Bachelor of Science in chemistry from Loulsiana State
University in 1961, a Master of Education in 1969 from the
University of Southwestern Louisiana, and an Educational
Specialist degree from the University of Southwestern
Louisiana in 1978.

She has been employed in the public and private
secondary schools of St. Mary Parish for twenty-three years
as a classroom teacher. During that time she has taught

mathematics, scilence, and computer science.

89

EXAMINATION AND THESIS REPORT

Candidate: Mary Diane Bodin Calamari
Major Field: EDUCATION

Title of Thesiss A COMPARISON OF TWO METHODS OF TEACHING COMPUTER
PROGRAMMING TO SECONDARY MATHEMATICS STUDENTS

Approved:

LIL iLecoen

Major Professor and Chairman

}\)MA/\ /\/ml/\

Dean of the Graduate School

EXAMINING COMMITTEE:

=S vl A P

;s/%
el & Frres

ﬂ:z?::fu A

Date of Examination:

July 13? 1983

